
SECA Fuel Processing

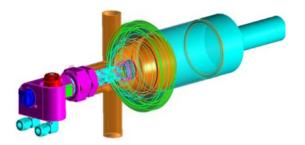
Fossil Energy Fuel Cell Program

Wayne Surdoval, SECA Coordinator June 3, 2003

National Energy Technology Laboratory
Office of Fossil Energy

REFORMING

Focus


- Heavy hydrocarbons
- Minimal use of water
- Simplified system
- Reduced cost
- Sulfur tolerance with conversion to hydrogen sulfide

Challenges

- Carbon deposition
- Sulfur poisoning
- Thermal gradients
- Vaporization

Approaches

- Metal oxide catalysts
- Nobal metal cPox or ATR
- Decorated nickel surface
- Complete system interactions

Tubular cPox Reformer

NETL Fuel Processing Budget Summary

Proj. #	PROJECT	PERSONNEL	KEY TASKS	COST EST.
1	Diesel Reforming Kinetic Fundamentals	*Shekhawat	1.) Bring Reforming Lab Online 2.) Conduct	
		Gardner	Diesel Compound Interaction Study 3.) Level 1	
		Berry	Kinetic Determination with Benchmark Diesel	\$350
2	Fuel Desulfurization of Diesel & NG	*Gardner	1.) Evaluate Process & Cat.Parameters on	
		Shekhawat	SCOHS NG Desulf. 2.) Evaluate Potential of	
		Berry	High T. Desulfurization Sorbents	\$275
3	Fundamental Reforming Studies - Role of	*Berry	1.) Identify Techniques for Determining Role of O2	
	Catalytic O2 Supports on Fuel Reforming	Gardner	Supports 2.) Conduct Experimental Study 3.)	
	and Alternate Reforming Catalysts	Shekhawat	Evaluate Alternate Reforming Catalysts	\$350
4	SECA Fuel Processor Component Test	*Lyons	1.) Develop Design Spec for 2-Article Test Bay for	
	Stands	Berry	10-kW Reformers 2.) Conduct Facility Shakedown	
				\$395
5	Fuel Processing Data Base - Ref. &	*Berry	1.) Develop Fuel Reforming Database & Report	
	Desulf.	*Shekhawat	2.) Develop Fuel Desulfurization Database and	
		Gardner	Report	\$75
6	Evaluation of Fuel Processor APU's	*Rogers	1.) Develop Model for APU Reformer & Conduct	
		*Berry	Concept Evaluations 2.) Conduct System	
		James	Analysis Tradeoff Studies	\$175
			TOTAL FUEL PROCESSING BUDGET	\$1,620

Technology Advantages & Critical Issues in Diesel Reforming for SOFC Applications

The diesel advantages

- Highest volumetric and gravimetric density for hydrogen content.
- Available distribution network
- Preferred fuel for heavy vehicle, remote site power generation, and military applications.

Key challenges for diesel reforming catalyst development

- Carbonaceous Deposit Formation.
 - Coke formation High molecular weight and aromatics result in more Cdeposit.
- Catalyst Durability
 - Sulfur tolerance S poisoning to metal deactivates the catalyst.
 - Metal stability Metal vaporization and agglomeration causes the loss of active site.
 - Support stability Extreme operating temperature and chemical environment destruct catalyst surface area and morphology.
- Reforming Efficiency To Hydrogen And Carbon Monoxide.
 - Reaction temperature High fuel conversion requires higher reforming temperature.
 - Steam usage Onboard water storage needs to be reduced or removed.

ARGONNE NATIONAL LABORATORY

Argonne's approaches to address diesel reforming catalyst issues

New ATR Catalyst Development

- Develop new parasite type catalyst with improved thermal and chemical stability at high operating temperature.
- Selectively substitute transition metal to A & B site to enhance reforming activity.
- Characterize catalyst to establish structureproperty relationship.

Perovskite ABO₃ Structure O B

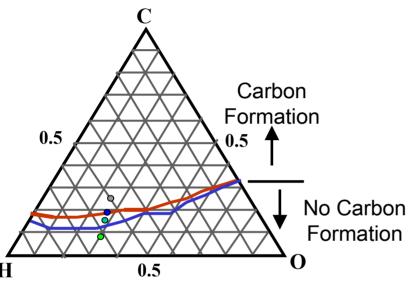
ARGONNE NATIONAL LABORATORY

Catalyst Performance Evaluation

- Investigate catalyst activity and reforming efficiency under different operating conditions (O₂/C, H₂O/C, space velocity, etc) with diesel surrogate fuels.
- Study catalyst deactivation mechanism under elevate temperature & in presence of sulfur.

Investigation of Alternative Catalytic Operating Mode

- Reduce or remove steam content from ATR to POX.
- Reform fuel with recycled SOFC emission stream.
- Use alternative catalyst substrate to improve ATR thermal management.


Examination of Carbon Formation During Fuel Reformation

- Approach: Examine the conversion of diesel fuel to syn. gas (H₂ + CO)
 - Examine fundamentals of reforming of diesel fuel
 - Evaluate methodology (ATR, CPOx, Gas-Phase Oxidation)
 - System water balance and fuel/water feed methods
 - Model, measure and control carbon formation
 - Develop carbon removal-catalyst regeneration techniques
- Tasks: Model and Measure Carbon Formation
 - Equilibrium and component modeling
 - Measure carbon formation via in situ techniques
 - Examine/develop reformer operation that limits carbon formation
 - Fuel/Air/Steam Mixing
 - Fuel vaporization/fuel atomization
 - Direct liquid injection
 - Steam as fuel carrier gas
 - Simulate SOFC anode recycle (water addition by anode recycle)
 - Catalyst regeneration by oxidative carbon removal

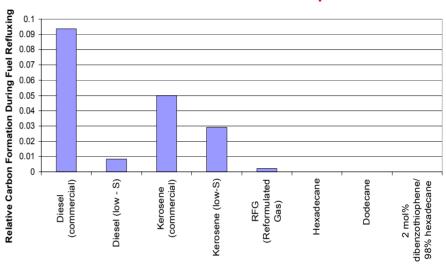
Carbon Formation During Diesel Refoming

Carbon Formation Modeling

Temperature 450 °C

--x-- = amorphous carbon

$$-x-=$$
 graphite


$$\bullet$$
 = (O/C = 1.0, S/C = 2.5)

$$= (O/C = 1.0, S/C = 1.0)$$

$$= (O/C = 1.0, S/C = 0.5)$$

$$\circ$$
 = (O/C = 1.0, S/C = 0.0)

Carbon Formation in Vaporization

- Saturated pure diesel components and lower hydrocarbons do not show pyrolysis
 - -added sulfur (dibenzothiophene) does not show carbon formation
- Diesel fuels, kerosenes show pyrolysis (carbon formation) upon vaporization
- Diesel fuel reformers require:
 - -Direct fuel injection
 - -Water to suppress carbon formation

Current Work and Results

- Carbon Formation Measurements and Modeling
 - -Measured diesel fuels and components for vaporization pyrolysis
 - Sulfur removal decreases carbon formation from pyrolysis
 - Pure components do not show pyrolysis
 - -Equilibrium carbon formation modeling
 - Defined carbon disappearance equilibrium temperature
 - Equilibrium varies greatly with air/steam, slightly with pressure, cetane #.
 - Equilibrium calculations for various carbon types
 - -Hysteresis observed after on-set of carbon formation
- •Demonstrated diesel fuel reforming with direct fuel injection via fuel nozzle
 - –Control of fuel temperature is critical to:
 - Prevent fuel vaporization
 - Prevent fuel pyrolysis / clogging of nozzle
- Regeneration of catalysts by oxidative removal of carbon
 - Carbon/oxygen content control required to prevent 'catastrophic' temperature rise

Programs Initiating in Fuel Reformation at PNNL **SECA Core Technology: Carbon Minimization**

- Carbon formation during reformation of gasoline and diesel fuels limits catalyst options
 - Especially problematic with nickel catalysts
 - Precious metals commonly used despite high expense
- Surface alloying of nickel catalysts show promise in reducing carbon formation and catalyst cost
 - Low concentrations of gold atoms form surface alloys
 - Most active sites for carbon formation are blocked
 - Activity of neighboring nickel sites is affected
- Stability of nickel-gold and other surface alloys will be investigated for performance and stability with heavy liquid hydrocarbons

Programs Initiating in Fuel Reformation at PNNL SECA Core Technology: Sulfur Tolerance

- Liquid hydrocarbon feedstocks contain organosulfur compounds
 - Sulfur deposits on catalytically active sites
 - Performance of reformer catalysts and fuel cell anode drastically reduced
- Use of precious metal catalysts and high temperatures is current method to minimize effects of sulfur
 - Expensive catalysts
 - Expensive materials of construction for reactors
- Program will evaluate performance of several classes of catalysts for activity and stability with sulfur-bearing fuels
 - Catalysts identified from patent and open literature
 - Limited or no precious metal content
- Program will also evaluate mode of reforming (SMR, ATR, CPOX) on resistance to deactivation by sulfur

